تحلیل و پیش‌بینی روزهای خشک با استفاده از مدل شبکه عصبی مصنوعی (مطالعه موردی: ایستگاه تهران)

Authors

Abstract:

شبکه‌های عصبی مصنوعی  به­عنوان یکی از تکنیک‌های غیرخطی در مطالعات اقلیمی و هیدرولوژی اهمیت فراوانی به­خود اختصاص داده­اند. تغییراقلیم و به­دنبال آن گرمایش جهانی از پدیده‌های اقلیمی به شمار می‌رود. شمار روزهای خشک و تداوم آن خشکسالی را به­دنبال دارد. در این پژوهش از داده‌های بارش روزانه طی سال‌های (1976-2008) و شبکه عصبی مصنوعی در نرم‌افزار MATLAB به­منظور پیش‌بینی شمار روزهای خشک ایستگاه تهران استفاده شده است. شبکه به­کار رفته از نوع Feed-forward با الگوریتم کاهش شیب و مارکوارت لونبرگ در مرحله آموزش و یادگیری می‌باشد. ساختارهای گوناگونی در لایه ورودی و پنهان در مرحله آموزش مورد آزمایش قرار گرفت. در نهایت شبکه با 4 ورودی و 5 نرون در لایه پنهان و 1 نرون در لایه خروجی به مطلوب‌ترین ساختار (1-5-4) جهت پیش‌بینی بهینه با بیش‌ترین همبستگی پاسخ داد. نتایج نشان داد که در ایستگاه مذکور، روزهای خشک پیش‌بینی شده توسط شبکه در مقایسه با طول دوره آماری مورد بررسی دارای روند افزایشی بوده است که با محاسبه احتمال وقوع روزهای خشک، طی سال‌های (2018-2009) با استفاده از زنجیره مارکوف، موارد فوق تأیید گردیده است. ضریب همبستگی مقادیر پیش‌بینی روزهای خشک بدون ترکیب با الگوریتم ژنتیک 86 درصد است. بعد از آموزش شبکه با ترکیب  الگوریتم ژنتیک با لایه­‌های مختلف این مقدار به 88درصد رسید که می‌توان گفت در صورت ترکیب شبکه با الگوریتم مذکور نتایج قابل قبول ارائه می­دهد.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

تحلیل و پیش بینی روزهای خشک ایران زمین با استفاده مدل شبکه عصبی مصنوعی

بسیاری از پدیده های طبیعی- اقلیمی نظیر بارش از تغییرپذیری بالایی برخوردارند. این ویژگی در رخداد حالات مختلف بارش به خوبی نمایان است. یکی از این حالات، عدم رخداد بارش در امتداد زمان و طی روزهای سال است، که تداوم آن موجب بروز روزهای خشک و به دنبال آن پدیده خشکسالی می شود. در این پژوهش سعی شده است با نشان دادن تصویر کلی از مشخصات عمومی بارش در پهنه ایران، به پیش بینی روزهای خشک پرداخته شود. در پژو...

15 صفحه اول

تخمین نفوذپذیری نهایی خاک‌ها با استفاده از مدل شبکه عصبی مصنوعی (مطالعه موردی: مزرعه پردیس ابوریحان)

نفوذپذیری یکی از مهم‌ترین پارامترهای فیزیکی خاک‌ها و از داده‌های بنیادی طرح‌های آبیاری و زه‌کشی است. اگرچه برای توصیف این پدیده، تاکنون روش‌ها و روابط مختلف تئوری و یا تجربی ارایه شده، ولی هنوز هم از جنبه‌های تطابق و امکان کاربرد علوم جدیدی نظیر روش شبکه‌های عصبی مصنوعی در پیش‌بینی این پدیده، جای تحقیق و بررسی وجود دارد. در تمام روش‌های موجود برای تعیین روابط نفوذ، انجام آزمایش‌های زمان‌بر و پر...

full text

مدل سازی خشک کردن اسمزی زردآلو با استفاده از الگوریتم ژنتیک - شبکه عصبی مصنوعی

ایران از نظر تولید زردآلو در جهان مقام دوم را دارد و مطالعه عوامل موثر بر خشک کردن این میوه و مقدار تاثیر آنها امری ضروری می باشد. لذا در این مطالعه تاثیر دمای محلول اسمزی در محدوده °C 25 تا °C 65، در مدت زمان 30 تا 120 دقیقه و غلظت محلول اسمزی در محدودۀ 30 تا 60 درصد (وزنی/وزنی) بر پارامترهای کاهش وزن، کاهش آب، جذب مواد جامد و نسبت دفع آب به جذب مواد جامد در طی خشک کردن اسمزی زردآلو مورد بررسی...

full text

تحلیل مؤلفه‌های فرهنگ‌سازمانی دانش‌محور با استفاده از شبکه عصبی مصنوعی

این پژوهش به تحلیل مولفه های فرهنگ سازمانی دانش محور به منظور نیل به اثربخشی عملکرد با استفاده از شبکه عصبی مصنوعی می‌پردازد.پژوهش حاضر ازنظر نوع استفاده کاربردی است که با روش آمیخته اکتشافی انجام‌شده است. در تدوین ادبیات پژوهش با استفاده از روش بررسی اسنادی و نتایج حاصل از آن، مصاحبه‌های عمیق حضوری در چندین نوبت با 20 نفر از خبرگان دانشگاهی به عمل آمد. پس از ثبت مصاحبه‌ها، داده‌ها به روش تحلیل...

full text

برآورد تبخیر از تشت تبخیر ایستگاه سد تنظیمی دز با استفاده از روش شبکه عصبی مصنوعی

بیشتر بارندگی مناطق خشک و نیمه خشک بصورت تبخیر به جو باز می گردد پس تخمین تبخیر دربرآورد میزان آب در چرخه آب مهم خواهد بود. تبخیر وابسته به پارامترهای مختلفی است و برای برآورد آن نیاز به متغیرهای اقلیمی متفاوتی است و اثر متقابل این متغیرها بسیار پیچیده است لذا در بررسی آن باید روشهای دقیقی را بکار گرفت. در این تحقیق برای برآورد تبخیر از تشت ایستگاه سد تنظیمی دز از روش شبکه عصبی مصنوعی استفاده ش...

full text

پیش بینی آبدهی متوسط ماهانه با استفاده از مدل تلفیقی شبکه عصبی مصنوعی و تبدیلات موجک (مطالعه موردی: رودخانه کر- ایستگاه پل خان)

آگاهی از اطلاعات دبی جریان در رودخانه ها برای مدیریت منابع آب، پیش بینی سیل، طراحی مهندسی و مدیریت زیست محیطی ضروری می باشد. مدل های ارائه شده همچون بارش-رواناب و سری های زمانی به منظور پیش بینی میزان آبدهی رودخانه ها به دلیل عدم دقت و پیچیدگی عوامل مؤثر در آبدهی در بسیاری از موارد با مقادیر مشاهده شده تطابق ندارد. موجک یکی از روشهایی است که در سالهای اخیر در زمینه هیدرولوژی مورد توجه قرار گرفت...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 21  issue 60

pages  161- 167

publication date 2017-08-23

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023